In-fiber production of polymeric particles for biosensing and encapsulation.

نویسندگان

  • Joshua J Kaufman
  • Richard Ottman
  • Guangming Tao
  • Soroush Shabahang
  • Esmaeil-Hooman Banaei
  • Xiangdong Liang
  • Steven G Johnson
  • Yoel Fink
  • Ratna Chakrabarti
  • Ayman F Abouraddy
چکیده

Polymeric micro- and nanoparticles are becoming a mainstay in biomedicine, medical diagnostics, and therapeutics, where they are used in implementing sensing mechanisms, as imaging contrast agents, and in drug delivery. Current approaches to the fabrication of such particles are typically finely tuned to specific monomer or polymer species, size ranges, and structures. We present a general scalable methodology for fabricating uniformly sized spherical polymeric particles from a wide range of polymers produced with complex internal architectures and continuously tunable diameters extending from the millimeter scale down to 50 nm. Controllable access to such a wide range of sizes enables broad applications in cancer treatment, immunology, and vaccines. Our approach harnesses thermally induced, predictable fluid instabilities in composite core/cladding polymer fibers drawn from a macroscopic scaled-up model called a "preform." Through a stack-and-draw process, we produce fibers containing a multiplicity of identical cylindrical cores made of the polymers of choice embedded in a polymer cladding. The instability leads to the breakup of the initially intact cores, independent of the polymer chemistry, into necklaces of spherical particles held in isolation within the cladding matrix along the entire fiber length. We demonstrate here surface functionalization of the extracted particles for biodetection through specific protein-protein interactions, volumetric encapsulation of a biomaterial in spherical polymeric shells, and the combination of both surface and volumetric functionalities in the same particle. These particles used in distinct modalities may be produced from the desired biocompatible polymer by changing only the geometry of the macroscopic preform from which the fiber is drawn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encapsulation of thyme essential oil in polymeric capsules using electrospray method

Background and objectives: Essential oils (EOs) of medicinal herbs are prone to degradation by oxidation, heating, or light. Encapsulation of EOs can protect these fragile volatile natural products from degradation. Thymus vulgaris (thyme) is a well-known herb which has been used as food additive as well as medicine since ancient times. Electrospraying is a novel techn...

متن کامل

Colloids: Applications and Remaining Challenges

Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...

متن کامل

Colloids: Applications and Remaining Challenges

Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...

متن کامل

Encapsulation of irinotecan in polymeric nanoparticles: Characterization, release kinetic and cytotoxicity evaluation

Objective(s): Irinotecan is a potent anti-cancer drug from camptothecin group which inhibits topoisomerase I. Recently, biodegradable and biocompatible polymers such as poly lactide-co-glycolides (PLGA) have been considered for the preparation of nanoparticles (NPs). Materials and Methods: In this study, irinotecan loaded PLGA NPs were fabricated by an emulsification/solvent diffusion method to...

متن کامل

Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review

Objective(s): Production of effective tuberculosis (TB) vaccine is necessity. However, the development of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. The purpose of this study was to determine the potential of polymeric particles as future vaccine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 39  شماره 

صفحات  -

تاریخ انتشار 2013